Showing posts with label science journalism. Show all posts
Showing posts with label science journalism. Show all posts

Monday 3 October 2016

Communicating science when we don't really understand it

(or how the heck do we explain what we actually know about epigenetics)


I was recently part of a Tweetchat [#EPNtalks](see here for @EpigenomicsNet storify of the chat)

I threw something out there that I have been thinking about for about five years.

Where is Genetics/Genomics/Epigenetics 's Stephen Hawking- or probably more accurately for today's kids our Neil Tyson DeGrasse?

N.B. While I love the Emperor of All Maladies, that is not the direction I envision with all due respect to Dr.Mukherjee.

I find it really frustrating that with all the great communicators that I know are in the field, we do not have a book that is targeted to the general public.

It is a frustration that I think has stunted the field, allowed a bunch of illogical mumbo-jumbo to replace clear concise analogy. 

In my mind there are a lot of reasons that we have gotten here...some of them are acceptable like the fundamental changes in funding levels that have been seen world-wide in the last decade or so. There are also some that I find completely unacceptable.

Here is a short list of unacceptable reason why "our" ability to communicate genetics/epigenetics sucks:
  1. We (scientists) don't actually understand much beyond their little patch of grass. I think we force a ridiculous level of specialization on trainees and students.
  2. We don't have well thought out experiments. In the last five or so years we have gone with this notion that you can collect data and find clear real, unbiased answers without a hypothesis.
  3. We  don't train Ph.D students to analyze (strongly related to #2). It is common fort MolBio, Genetics or Biochem graduate students to NOT take a statistics course prior to starting their Ph.D. 
  4. We have fallen in love with jargon. Getting through a Science or Nature paper nowadays is a horrendous effort in acronyms and 5 syllable words. 
  5. We have left public relations to the universities as we are too busy - doing science- to explain.  
I have put some thought into this and I have outline a potential book or probably better as a video series. I have attached it below. As always if you have any comments please add them below or email me directly at crwynder AT gmail  DOT com
Script for a potential script and book on epigenetics
My script/book idea for a book focused on how the machinery of Epigenetics relates to the real world examples of diversity and development.

Tuesday 21 January 2014

Twenty skills that I -or any Ph.D- has that are in demand

A while ago Christopher Buddle posted a blog on SciLogs about what you needed to know before becoming a professor. Many of those skills are the ones in demand outside of academia. 

It got me thinking generally what skills I have amassed over a Ph.D, Post-doc and faculty position. For any other "recovering scientists" reading this please feel free to steal this list, add to it or perfect it. Any comments or critique would be welcome. 
  1. Project managementover my academic career I managed to publish several papers in top journals. Some required precise planning of tasks and experiments on a short deadlines against competition. This requires ensuring that each set of experiments is finishes with a high quality deliverable.
  2. Human resource- as a professor I had to hire, fire and develop staff. This included students and early career professionals where you are balancing what they are capableof today, with their career goals. I picked projects for them that they matched their skills.
  3. Project planning- a PhD is a set of projects, that need to be planned out, with a full timeline, deliverables and costs set out. In addition a key part of a successful PhD or post-doc is knowing when to kill a project.
  4. Stakeholder relationship- each stage of a PhD requires you to set out goals with your faculty advisory committee. These people will provide guidance and advice for where you should spend your time. Part of success is ensuring that you cogent show progress toward each of the members ideas ofyour success. The stakes get higher as you move to a post-doc where you are expected to manage the project and manage the expectations of your boss.
  5. Budget building- as a professor I needed to build RFPs, prioritize purchases based on project needs-as well as the long term strategy of the lab, source infrastructure, mange vendors and raise funds.
  6. Publications- part of a scientists job is to communicate results to the community. This includes typical writing skills but also graphic design, matching the presentation visualizations to the message and audience.
  7. Data management- all aspects of data management including ensuring high quality data recording metadata, designing database considerations. Build database querying, integrating public and owned data into a complete set.
  8. Analytics- a key part of my PhD was defying how to quantitate behavior and images. This requires a clear analytic method that allows reproducibility through clear, logical rubric for scoring purposes.
  9. Web based research-not just the query but also the decision on good sources and bad ones.
  10. Public speaking- I have given hundreds of lectures to all sizes of groups both lay groups and expert groups. This gives me a large set of tools to fall back on for presentation design
  11. Individual drive- to do a PhD you need to an internal drive to do what must be done.
  12. Intellectual flexibility- as part of my PhD I learned at least 12 different technical skills at a high enough level to use them in peer reviewed publications and teach them to others. I learned these through reading and just dpingi didn't need to be walk through them multiple times.
  13. Records management- my laboratory work in a high demand, high competition environment. We needed to have all experiments documented in a way that would stand up to legal review and could be used as part of a patent process.
  14. Understanding of several healthcare related regulations- part of my work was related to drug discovery and some of it was in collaboration with clinicians. Meaning that we ensured that all documents and protocols met the required standards.
  15. Graphic design- genetics is a hard area to explain without pictures. I designed many successful visualizations using Photoshop, powepoint and old matte photography techniqies.
  16. Process design- my laboratory was at the bleeding edge of genetics. This meant that we were constantly building new processes and testing resources that would be best for that process.
  17. Process optimization- due to the unique methods we constantly needed to set production standards and build analytics that allowed us to evaluate and optimize process and make changes that reduced cost and increased reproducibility and accuracy.
  18. Contract negotiations-as part of my job, I have negotiated service contracts, terms of employment 
  19. Fund raising- academic labs are also look for new sources of funding and interacting with potential investors/funders
  20. Strategic product planning -a key part of success is understanding where government priorities are now and the next five years to develop a funding strategy. Successful scientists also have a understanding of the competitive landscape and position their employees and infrastructure to keep up.

Friday 18 October 2013

Lets focus on the the actual science not media fluff

Enough already all of the articles and blogs about how "epigenetics" is the cause of aggression or socio-economic disparity. 

Epigenetic modifications to the genome are not more important than genes, they are not separate from genes. They are how we regulate genes, genes are not binary- they are not on or off. They are used at certain levels for certain tasks ("grow an arm" will use the same genes as "grow a heart" but in much different dosages).

Epigenetics are akin to a thermostat. You wouldn't blame the thermostat for causing winter? No you use the thermostat to respond to winter.

Epigenetics is the same! It is the control mechanism that the body uses to respond to the environment. In this case the environment being EVERYTHING outside the nucleus of a single cell. Yes everything, cell signals, hormones, hunger, emotions, temperature, toxins- everything. 

Understanding epigenetics is like particle physics, we can be statistically certain but we can NOT be definitive about the role of any single epigenetic modification's role in a disease state or trait inheritance. 

It is mind-boggling how complex the potential role of epigenetics is in any disease. We do not even understand how it works at the single cell level, and we have people suggesting that "epigenetics" explains complex traits just because nothing else has explained that trait?!.....its frustrating. Epigenetics is not magic, it is at least 20 different types of gene regulation. That is all it is...its boring fundamental science. 

I get it; its hard to explain epigenetics but we are reaching Fox news area of truthiness with some of the blogs and "news" about Epigenetics. We, as the educated science community, need to hold ourselves to a higher standard. Epigenetics is part of everyday life; differences in twins, calico cats, Zebra spots. Lets appropriately educate the public using everyday examples and then go deeper. I have found people are more excited by the basics and a honest approach than being oversold. We get that enough nowadays with the 24 hour news cycle and 365 political campaigning. 

Lets not be part of the solution by "misspeaking" the wonderful nature of epigenetics. We should be exciting the public to the potential rather than selling snake oil.